Bioenergetics of adaptation to a salinity transition in euryhaline teleost (Oreochromis mossambicus) brain.
نویسندگان
چکیده
Freshwater (FW) teleosts are capable of acclimating to seawater (SW) following such a transfer from FW. However, their osmoregulating mechanisms are still unclear, particularly those in the brain. The present study was conducted to examine acute changes that occur in brain Na(+)-K(+)-ATPase activity, creatine kinase (CK) activity, creatine, creatinine contents, and ATP levels of tilapia (Oreochromis mossambicus) in response to this transition. After transfer to SW (25 ppt), the Na(+)-K(+)-ATPase activity was maintained for 8 hr at higher levels than that in FW. In contrast, in 35 ppt SW, Na(+)-K(+)-ATPase was maintained at a even higher level than in FW for the first 2 hr. Brain Na(+)-K(+)-ATPase contents in both the 25 and 35 ppt SW groups were significantly elevated within 1 and 0.5 hr after transfer from FW, respectively. Interestingly, brain CK activities and content (homodimer of the B subunit [BB] form) in both the 25 and 35 ppt SW groups were significantly elevated within 1 hr after transfer from FW. The ATP contents in 35 ppt SW increased abruptly within 0.5 hr, and then gradually decreased during the next 2 hr. Unlike the 35 ppt group that declined in ATP contents, the 25 ppt group leveled off within 24 hr. The elevations in CK activity and creatine levels after transfer from FW to SW imply that abrupt salinity changes alter phosphocreatine/CK ratio. Such changes are needed to satisfy the increases in the energetic requirement of the cotransport mechanisms mediating osmoregulation.
منابع مشابه
Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): effect of seawater exposure and cortisol treatment.
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and c...
متن کاملRapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells.
Gills of euryhaline teleosts are excellent models for studying osmotic-stress adaptation because they directly contact the aquatic environment and are an important effector tissue during osmotic stress. We acclimated tilapia (Oreochromis mossambicus) from fresh water (FW) to seawater (SW); performed suppression subtractive hybridization of gill mRNAs; and identified two transcription factors, o...
متن کاملCellular distributions of creatine kinase in branchia of euryhaline tilapia (Oreochromis mossambicus).
Although euryhaline teleosts can adapt to environmental fluctuation of salinity, their energy source for responding to changes in salinity and osmolarity remains unclear. This study examines the cellular localization of creatine kinase (CK) expression in branchia of tilapia (Oreochromis mossambicus). Western blot analysis of muscle-type CK (MM form) revealed a high association with salinity cha...
متن کاملEuryhaline tilapia Oreochromis mossambicus
regulated by, and suited to, the environment in which they reproduce. In many teleosts, which spawn in either freshwater or seawater, sperm motility is initiated by osmotic shock when sperm are ejaculated. These osmolality dependent regulatory systems are quite different in freshwater cyprinid teleosts, such as carp, gold fish and zebrafish, and marine teleosts, such as the pufferfish and floun...
متن کاملAcute changes in gill Na+-K+-ATPase and creatine kinase in response to salinity changes in the euryhaline teleost, tilapia (Oreochromis mossambicus).
Some freshwater (FW) teleosts are capable of acclimating to seawater (SW) when challenged; however, the related energetic and physiological consequences are still unclear. This study was conducted to examine the changes in expression of gill Na(+)-K(+)-ATPase and creatine kinase (CK) in tilapia (Oreochromis mossambicus) as the acute responses to transfer from FW to SW. After 24 h in 25 ppt SW, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental biology and medicine
دوره 227 1 شماره
صفحات -
تاریخ انتشار 2002